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Abstract: In this paper, the interaction between level ice and wind turbine tower is simulated by the
explicit nonlinear code LS-DYNA. The isotropic elasto-plastic material model is used for the level
ice, in which ice crushing failure is considered. The effects of ice mesh size and ice failure strain on
ice forces are investigated. The results indicate that these parameters have a significant effect on
the ice crushing loads. To validate and benchmark the numerical simulations, experimental data
on level ice-wind turbine tower interactions are used. First, the failure strains of the ice models
with different mesh sizes are calibrated using the measured maximum ice force from one test. Next,
the calibrated ice models with different mesh sizes are applied for other tests, and the simulated
results are compared to corresponding model test data. The effects of the impact speed and the size
of wind turbine tower on the comparison between the simulated and measured results are studied.
The comparison results show that the numerical simulations can capture the trend of the ice loads
with the impact speed and the size of wind turbine tower. When a mesh size of ice model is 1.5 times
the ice thickness, the simulations can give more accurate estimations in terms of maximum ice loads
for all tests, i.e., good agreement between the simulated and measured results is achieved.
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1. Introduction

With the growing renewable energy demands and the increasing concern about environmental
pollution, the development of renewable energy harnessing has been paid more and more attention.
As a sort of clean energy, wind energy has become the most promising renewable energy after
decades of development. Compared with the land-based wind, offshore environment has more
abundant wind energy resources with higher quality, and OWTs could avoid the problems of land
acquisition and noise [1]. However, a key technology challenge for OWTs is operation in cold climates,
i.e., the possibility of the structure interaction with floe ice enhances while operating in cold regions.
For example, the Great Lakes are the most promising locations for the OWTs in the United States.
The lakes are often substantially ice covered for the entire winter, and have wind and sea current driven
ice floes at times [2]. An OWT operating under wind and ice conditions is shown in Figure 1. Ice loads
should be taken as one of the important environmental impacts in addition to the aerodynamic loads.
Therefore, it is necessary to predict the ice loads caused by the level ice-OWT interaction.

J. Mar. Sci. Eng. 2019, 7, 439; doi:10.3390/jmse7120439 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0002-6312-0494
https://orcid.org/0000-0001-5522-8094
http://dx.doi.org/10.3390/jmse7120439
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/7/12/439?type=check_update&version=2


J. Mar. Sci. Eng. 2019, 7, 439 2 of 23

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 2 of 25 

 

 

1. Introduction 

With the growing renewable energy demands and the increasing concern about environmental 
pollution, the development of renewable energy harnessing has been paid more and more attention. 
As a sort of clean energy, wind energy has become the most promising renewable energy after 
decades of development. Compared with the land-based wind, offshore environment has more 
abundant wind energy resources with higher quality, and OWTs could avoid the problems of land 
acquisition and noise [1]. However, a key technology challenge for OWTs is operation in cold climates, 
i.e., the possibility of the structure interaction with floe ice enhances while operating in cold regions. 
For example, the Great Lakes are the most promising locations for the OWTs in the United States. 
The lakes are often substantially ice covered for the entire winter, and have wind and sea current 
driven ice floes at times [2]. An OWT operating under wind and ice conditions is shown in Figure 1. 
Ice loads should be taken as one of the important environmental impacts in addition to the 
aerodynamic loads. Therefore, it is necessary to predict the ice loads caused by the level ice-OWT 
interaction. 

 

Figure 1. OWT exposed to wind field and in contact with ice. 

The interaction between an OWT and level ice is a complex process. The magnitude and time 
variation of the ice loads depend strongly on the geometry of the wind turbine, the ice thickness, the 
ice strength, and their impact velocity. There are various ice failure modes observed in the ice-
structure interaction. Typically, for level ice, bending, buckling, cracking/splitting, or crushing could 
take place, which is strongly governed by the shape of the structure at the water level [3,4]. The 
sloping shapes cause the level ice to fail by bending, whereas the vertical shapes induce the level ice 
to fail by crushing [5]. The level ice is weaker in bending than crushing. Therefore, the 
implementation of sloping shapes for OWTs can effectively reduce the magnitude of ice loads. Many 
model tests have verified the lower ice loads on a conical structure than on a cylindrical structure of 
similar size [6–8]. However, the application of sloping shapes will induce larger wave loads and 
enhance the foundation costs because of the additional material near the water level. 

Figure 1. OWT exposed to wind field and in contact with ice.

The interaction between an OWT and level ice is a complex process. The magnitude and time
variation of the ice loads depend strongly on the geometry of the wind turbine, the ice thickness, the ice
strength, and their impact velocity. There are various ice failure modes observed in the ice-structure
interaction. Typically, for level ice, bending, buckling, cracking/splitting, or crushing could take
place, which is strongly governed by the shape of the structure at the water level [3,4]. The sloping
shapes cause the level ice to fail by bending, whereas the vertical shapes induce the level ice to fail
by crushing [5]. The level ice is weaker in bending than crushing. Therefore, the implementation of
sloping shapes for OWTs can effectively reduce the magnitude of ice loads. Many model tests have
verified the lower ice loads on a conical structure than on a cylindrical structure of similar size [6–8].
However, the application of sloping shapes will induce larger wave loads and enhance the foundation
costs because of the additional material near the water level.

Many studies have been carried out to investigate the interaction between ice and cylindrical or
sloped structures by model tests, full-scale tests and numerical simulations [9–14]. Yue et al. conducted
full-scale tests on a cylindrical compliant monopod platform to investigate the dynamic ice forces and
structure vibrations generated by crushing failure of the ice sheet [15]. The test results showed that three
ice force modes take place in the loading speeds which make ice fail in ductile, ductile-brittle transition,
and brittle range respectively. Kuutti et al. simulated ice crushing against a rigid vertical structure using
cohesive surface methodology [16]. The simulated crushing forces agreed well with the experimental
results. Lu et al. and Wang et al. carried out numerical simulations of interactions between level ice
and sloping structure using the cohesive element method [17,18]. Zhou et al. proposed a numerical
model to simulate the non-simultaneous crushing force acting on the cylindrical structures of wind
turbines [19]. It was observed that the simulation results agree well with the measured data from the
model tests in terms of the maximum ice force. Ranta et al. simulated ice rubble-structure interaction
processes based on arbitrary Lagrangian-Eulerian finite element method [20]. However, there was a
lack of validation on the characteristics of the obtained rubble pile geometries.

Some researchers focus on the predictions of the coupled dynamic loads and responses of an
OWT [2,21]. Shi et al. studied the dynamic ice-structure interaction of a monopile-type OWT in drifting
level ice in both parked and operating conditions by coupling a semi-empirical numerical model to
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the aero-hydro-servo-elastic simulation tool HAWC2 [22]. The effects of ice drifting speed and ice
thickness were investigated by using the coupled dynamic analyses. It was found that the effect of
the ice thickness on the response is significant, whereas the effect of drifting speed on the bending
moment response in the fore-aft direction is negligible. Wells developed a simulation tool to study the
effects of ice on both cylinder- and cone-shaped OWTs [23]. The simulation results indicated that the
surface ice sheet loads can be much larger than the wind loads and could be the driving parameters
of the OWT foundations design in areas where ice can occur. Heinonen and Rissanen conducted a
feasibility study of the FAST simulation software to investigate the structural performance of OWTs [4].
They studied the ice interaction with vertically shaped structures at the water line and taking into
account the coupling between the ice, wind, and structural response. However, there is a limitation in
the ice model for describing a brittle crushing process.

For the load design, the ice crushing is the most important since it causes the biggest force and
might induce severs steady-state vibrations as well [24]. When the cylindrical structures are interacting
with drifting ice (of thickness 0.2 m and more), the ice crushing failure action can generate as high
dynamic forces as 5 MN and are of critical concern for the structural designers [25]. Therefore, it is
necessary to investigate the dynamic interaction between level ice and vertical structures where ice
crushing failure takes place. Most of the present works established the ice forces from the existing ice
models, in which the dynamic interaction process and the ice crushing failure could not be simulated.

This paper focuses on the numerical study to predict the ice crushing force acting on the
cylindrical OWT foundation based on the nonlinear finite element method, in which the dynamic
interaction process is simulated. The isotropic elasto-plastic material model is used for level ice to
simulate ice crushing failure. The effects of ice mesh size and failure strain on the ice forces are
investigated. Model tests on the interaction between level ice and nearly vertical wind turbine tower
are used to calibrate and validate the numerical simulation results. Four impact cases are considered.
The comparisons between the simulated and measured results including the maximum, mean, standard
deviation, and time series of the ice forces are made. In addition, the studies on the effects of the impact
speed and the size of wind turbine tower on the comparison are carried out.

2. Experimental Data

This section presents the experimental data used to calibrate and verify the numerical simulation
results. The tests were conducted by Wu et al. at [26] the ice Basin of Tianjin University. The interaction
between level ice and wind turbine tower was considered. The experimental scale was chosen to be
1:20. The force in full scale F f is calculated by the following equation:

F f = Fmλ
3 (1)

The test represents the impacts between a 0.4 m thickness level ice and the monopile foundations
of a 3-MW and a 4-MW wind turbine towers at speeds varying from 0.05 to 1.2 m/s in full scale.
The target thickness of the level ice is 0.4 m in full scale. The bending and crushing strength of the
level ice are expected to be 0.6 MPa and 2.06 MPa in full scale, respectively. A total of 12 impact
tests were conducted. Tests #304, #306, #404, and #406 are selected for the analysis because the brittle
ice crushing failure took place in these tests and the time histories of ice forces for these tests were
available. The specific test matrix and the ice properties are given in Table 1.
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Table 1. Test matrix and measured ice conditions (in full scale).

Test Wind Turbine
Tower

Ice Thickness
(m)

Bending
Strength (kPa)

Crushing
Strength (kPa)

Ice Drifting
Speed (m/s)

#304 3 MW 0.4 572 1980 0.6
#306 3 MW 0.4 664 2122 1.2
#404 4 MW 0.4 572 1980 0.6
#406 4 MW 0.4 664 2122 1.2

Figure 2 shows the geometry of the 3-MW and 4-MW monopile wind turbine towers.
The foundations of the wind turbine towers are nearly vertical structures. The diameter of the
3-MW and 4-MW monopile wind turbine towers at waterline is 5.30 m and 5.83 m in full scale,
respectively, and their slope angle is 87.2 degrees and 88.3 degrees, respectively.

An ice force experiment scenario for a 3 MW model test is shown in Figure 3. A force transducer
measured the ice loads using a data acquisition system with a sampling frequency of 100 Hz.
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3. Numerical Analysis

This section details the finite element modeling, the material models, and major results.
All simulations were run on an 8 CPU workstation with Inter 3.60 GHz processors and 16.0 GB
of RAM. The software used was LS-DYNA version R700 with double precision. LS-DYNA software has
a number of contact algorithms and a large suite of material types that can be chosen for the interacting
structures. It has been widely used to simulate ice-structure collisions. Patran software was used for
the modeling and generation of meshes for the study.

3.1. Model Description

Figure 4 shows the numerical domain of the simulations. The dimensions of the level ice
are 55 m × 55 m × 0.4 m. The ice model extent is sufficient to minimize the effect of boundary
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conditions. The dimensions of the wind turbine towers in the numerical models are the same as the
experimental models.
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The ice is modeled using eight-node solid elements. The wind turbine towers are discretized
using four-node Belyscho-Tsay shell elements. The mesh size for the level ice is approximately
0.6 m × 0.6 m × 0.4 m, in which there is only one layer of meshes in the vertical direction. The wind
turbine towers are meshed with an element size of 0.4 m. The number of elements for the ice and the
wind turbine towers are 151250 and 1645, respectively.

To avoid the initial penetration and numerical instabilities, the translational velocity of the wind
turbine tower at water plane ramps up from 0.0 m/s to 1.2 m/s before the impact occurs. After it reaches
1.2 m/s, the velocity is kept to be constant throughout the rest of the simulations. This can be achieved
by using the LS-DYNA command “boundary prescribed motion rigid” with define curve. LS-DYNA
offers a large number of contact types. The contact between the level ice and the wind turbine tower
is implemented through the contact-eroding-surface-to-surface formulation, which is used with the
segment-based contact option (soft = 2) in LS-DYNA. This eroding contact type contains logic which
allows the contact surface to be updated to consider the ice element deletion [27]. The ice is defined as
“slave “segment and the wind turbine tower is defined as “master” segment, a search for penetration
of a “slave” node through the “master” segment is made every time step. When a penetration is found,
a contact force proportional to the penetration depth is applied to resist and ultimately eliminate the
penetration. The contact force is contained in the “rcforc” file produced by using a database-rcforc
command. In order to consider the self-contact of the ice component, the contact-eroding-single-surface
contact type which is the most widely used contact options in LS-DYNA is applied for the ice model.
Both static and dynamic coefficients of friction are set to 0.15 at all the contacts, which is a reasonable
assumption for the friction between the ice and the steel surfaces.

3.2. Material Models

For finite element analyses of ice-structure interactions, the constitutive material model for the
ice is a critical factor to accurately predict maximum ice forces [28]. Wang et al. proposed an ice
model for the interaction between sloping marine structure and level ice by using the cohesive element
model [18]. In their model, the isotropic elasto-plastic linear softening constitutive model proposed by
Hilding et al. was introduced to present the microscopic crushing of the ice sheet, while the bending
failure of ice sheet was caused by the failure of cohesive elements [29]. In our case, the slope angle
of the wind turbine towers is close to 90 degree. The ice crushing is in the dominant failure mode
during the interaction between the level ice and the wind turbine towers. Therefore, the isotropic
elasto-plastic material model is used for the level ice in this paper.

Figure 5 shows the relationship between the yield stress and effective plastic strain for the ice
model. The effective plastic strain is defined as:
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εp =

∫ t

0
(

2
3

Dp
ijD

p
ij)

1/2
dt (2)

The ice performance is assumed to have three stage states: The ice material is elastic before
reaching the crushing initial point; after the first crack, the ice material shows a linear softening
behavior; when the ice is totally crushed, it behaves as a viscous fluid. To describe the ice behavior,
the “mat-piecewise-linear-plasticity” material type from LS-DYNA’s suite of material types is used
here, in which an elasto-plastic material with the yield stress versus strain curve and failure based on a
plastic strain can be defined. For the wind turbine towers, the rigid material model is used, in which
the deformation of the structure during interaction is not considered. The input material parameters to
both the level ice and the wind turbine towers models are given in Table 2.
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Table 2. Material parameters used in the simulations.

Items Level Ice Wind Turbine Towers

Density (kg/m3) 900 7850
Young’s modulus (GPa) 2 210

Poisson ratio (-) 0.3 0.3
Yield stress (MPa) 2.06 -
Failure strain (-) 0.2 -

3.3. Effect of Ice Mesh Size

To investigate the effect of the ice mesh size on the ice force, four meshes with characteristic
element lengths of 0.2 m, 0.4 m, 0.6 m, and 0.8 m are considered, and corresponding size ratio (mesh
size/ ice thickness) is 0.5, 1, 1.5, and 2, respectively. It is noted that there are two layers of meshes in the
vertical direction for mesh size of 0.2 m, and only one layer for other mesh size (shown in Figure 6).
The ice failure strain of 0.2 is used in all simulations. The other parameters are equal to the basic values
according to the setup of test #306.
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Figure 7 shows the horizontal ice force histories for different ice mesh sizes. It is found that the ice
mesh size has a significant effect on both the fluctuated frequency and peak forces. With the refinement
of mesh, the frequency increases, while the peak forces decrease. The mean and standard deviation of
force are calculated by the following equations:

Fmean =
1
N

N∑
i

Fi (3)

σ =

√√√
1
N

N∑
i

(Fi − Fmean)
2 (4)

The comparison of the mean, standard deviation, and maximum forces are tabulated in Table 3.
The simulated maximum force varies from 1.88 MN to 4.34 MN. Figure 8 shows the mean, standard
deviation, and maximum forces varying with the mesh size. It is shown that the simulation with coarse
mesh yields higher standard deviation and maximum force. Overall, both the standard deviation and
maximum forces present an approximately linear relationship with the mesh size. However, for the
mean force, the simulated values with different mesh sizes are around 0.86. The simulated results
indicate that the mesh size has a significant effect on both the standard deviation and the maximum
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3.4. Effect of Ice Failure Strain

To investigate the effect from the ice failure strain, numerical simulations of the interaction between
the level ice and the 3 MW wind turbine tower with different failure strain coefficients are carried out.
The values of the ice failure strain in different simulations are set as 0.15, 0.2, 0.25, and 0.3, respectively.
The other parameters are kept constant and equal to the basic values according to the setup of test #306
where the drift speed is 1.2 m/s in full scale.

Figure 9 shows the comparison of the horizontal ice force histories for various failure strains. It is
observed that the fluctuated frequencies in the four curves are similar. The peak load increases with
increasing failure strain. The mean, standard deviation, and maximum values are listed in Table 4
and these values varying with failure strain is shown in Figure 10. It is seen that the mean, standard
deviation, and maximum forces present a linear increasing tendency with the larger failure strain.
The linear curves which are fitted to the simulated mean, standard deviation, and maximum data
are also presented in the figure, in which the slope of the curves is 4.48, 1.76, and 11.68, respectively.
The simulated results indicate that the failure strain plays an important role in the simulated ice forces.

Table 4. Comparison of the ice forces for the simulations with different failure strains.

Failure Strain 0.15 0.20 0.25 0.30

Mean (MN) 0.70 0.98 1.21 1.37
Std. (MN) 0.59 0.70 0.77 0.86

Maximum (MN) 2.38 3.20 3.67 4.17
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Figure 9. Ice force histories from the simulations with different failure strains.
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Figure 10. The mean, standard deviation, and maximum forces varying with the failure strain.

In summary, both the ice failure strain and the ice mesh size are crucial to ice force, including
the mean, standard deviation, and maximum values. In addition, the fluctuated frequency is lower
in the simulation with coarse mesh. Therefore, the failure strain should be determined from the
numerical simulation with a given mesh size and the parameters should be calibrated using available
experimental data.
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4. Comparison of the Numerical Simulations and Test Results

This section presents the comparisons of the horizontal ice force histories, maximum, mean,
and standard deviation values between the simulated and measured results for tests #306, #304, #404,
and #406. Four groups of meshes are considered.

4.1. Comparison of Test #306

According to the results from Sections 3.3 and 3.4, the selections of ice failure strain for different ice
mesh sizes are justified by a trial and error procedure which yields the better results for the maximum
load, i.e., the simulated maximum force for the interaction between the level ice and the 3-MW wind
turbine tower is in good agreement with the experimental measurement for test #306.

The ice failure strains of 0.43, 0.29, 0.2, and 0.12 are determined for using in the numerical
simulations with the mesh size of 0.2 m, 0.4 m, 0.6 m, and 0.8 m, respectively. The relationship between
the failure strain and the size ratio is shown in Figure 11. It is observed that the failure strain decreases
with increasing size ratio. In this figure, an exponential curve y = CeAx, where C = 0.67 and A = −0.84,
is fitted to the simulation data. It is shown that the difference between the two curves is small, in which
the coefficient of determination R2 is equal to 0.99. The results indicate that y = 0.67e−0.84x can be
adopted to describe the relationship between failure strain and size ratio for this case.
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Figure 11. Relationship between failure strain and size ratio.

Figures 12–15 show the comparison of horizontal ice force histories between the simulations and
measurement for test #306. In general, both the simulated and measured ice forces present strong
nonlinear and vibrating behavior, and their trends are similar. It is observed that all simulations
capture the maximum force well. Overall, the simulation with mesh size of 0.2 m gives better results:
most of the peak and valley values are around 2.8 MN and 0.8 MN, respectively (see the dash line in
Figure 12), which are in good agreement with the model test. However, the valley values in the other
simulations are much smaller than the measurement, especially in the simulation with mesh size of
0.8 m. It can be seen that the zero forces obtained from the simulation with mesh size of 0.8 m are much
more than those obtained from the other simulations and the model test (see Figure 15). This is mainly
because the accumulation and sliding forces from the interaction between the wind turbine tower and
the ice fragments are not considered in the simulations where the failed ice elements are removed.
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With increasing mesh size of ice, the simulated ice breaking length increases, and consequently the gap
between the wind turbine tower and the unbroken ice sheet will increase.
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Figure 13. Ice force histories from the simulation with mesh size of 0.4 m and measurement for test #306.
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Figure 15. Ice force histories from the simulation with mesh size of 0.8 m and measurement for test #306.
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To have a better understanding of the icebreaking process, Figures 16 and 17 give the partial
magnification snapshots of the ice sheet at t = 10 s in the simulation with mesh sizes of 0.2 m and 0.8 m.
It is obviously shown that there is a big gap between the wind turbine tower and the unbroken ice sheet
in the simulation with mesh size of 0.8 m, which results in many zero forces. For the simulation with
mesh size of 0.2 m, full contact between the structure and the ice can be found, which means that the
interaction between the structure and the level ice is continuous. This phenomenon can explain why
the mesh size affects the forces. Figure 18 shows an ice crushing scenario from test #306. It is seen that
there are many small ice pieces accumulating in front of the wind turbine tower during the interaction.
However, there is no interaction between the wind turbine tower and the broken ice pieces as failed
ice elements are removed in the simulations. This limitation of element deletion in the numerical
simulations results in the differences of the ice forces between the simulated and measured results.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 15 of 25 
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The simulated results including the mean, standard deviation, and maximum loads for different
mesh sizes are presented in Table 5. In addition, the corresponding model test data are given for
comparison. The comparison shows that the discrepancy of the maximum ice force between the
simulated and measured results is small for all mesh sizes. The largest discrepancy is 2.82% for mesh
size of 0.8 m, and the smallest is only 0.3% for mesh size of 0.6 m. However, the mean load decreases
with increasing mesh size. It is also found that the simulation with mesh size of 0.2 m provides
better predictions of mean load and standard deviation than the other simulations, i.e., there is a good
agreement between the simulation with mesh size of 0.2 m and the experiment. The discrepancies
of the mean load and the standard deviation are 3.1% and 3.3%, respectively. The simulations when
the mesh size is larger than 0.2 m underestimate the mean load, while overestimating the standard
deviation. This is due to more zero forces in the simulations with larger mesh size.

Table 5. Comparison between the simulated and measured results for test #306.

Items

Numerical Simulations (MN)
Model Test

(MN)Mesh Size
0.2 m

Mesh Size
0.4 m

Mesh Size
0.6 m

Mesh Size
0.8 m

Maximum 3.21 3.21 3.20 3.28 3.19
Mean 1.64 1.16 0.98 0.55 1.59
Std. 0.62 0.67 0.70 0.70 0.60

Figures 19–22 show the spectra of the ice force from the measurement and simulations with
different mesh sizes for test #306. It is observed that the main frequency in the measurement is 1.05 Hz,
compared to 6.05 Hz in the simulation with mesh size of 0.2 m, 3.05 Hz in the simulation with mesh
size of 0.4 m, 2.05 Hz in the simulation with mesh size of 0.6 m, and 1.55 Hz in the simulation with
mesh size of 0.8 m, which indicates that the main frequency in the simulation with larger mesh size is
lower and closer to the experimental data. It is noted that there is a good agreement of a peak between
the simulation with mesh size of 0.6 m and the measurement at the frequency at 1.05 Hz.
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In summary, the simulations when the relationship between failure strain and size ratio is
y = 0.67e−0.84x can provide an accurate prediction of maximum ice force for test #306. When comparing
the ice force histories between the simulated and measured results, more zero forces are found in the
simulations when the mesh size is larger than 0.2 m. Besides, the simulations overestimate the main
frequency than the model test.

4.2. Comparison of Test #304

It is interesting to investigate the effect of the impact speed on the comparison between the
simulated and measured results. Therefore, test #304 is simulated, in which the impact speed is 0.6 m/s.
The other parameters and mesh size are the same as they are in Section 4.1.

The time series of the horizontal ice forces from both the simulations and the measurements for
test #304 are given in Figures A1–A4. The comparisons show similar ice force characteristics with those
for test #306. The maximum, mean, and standard deviation values derived from the simulated and
measured ice forces are presented in Table 6. The comparison shows that the simulation with mesh
size of 0.6 m provides a more accurate prediction of maximum ice force than the other simulations.
The discrepancy between all simulated and measured maximum force ranges from 0.6% to 6.9%.
In addition, the mean ice force decreases with increasing mesh size, and the mean value obtained from
the simulation with mesh size of 0.4 m is closest to the measured data. All simulations overestimate
the standard deviation.

It is concluded that there is a good agreement between all simulated and measured results with
regard to the maximum ice force, which is consistent with the conclusion for test #306. The results
indicate that the impact speed has little effect on the comparison of maximum ice forces between the
simulations with different mesh sizes and the model tests.

Table 6. Comparison between the simulated and measured results for test #304.

Items
Numerical Simulations (MN)

Model Test
(MN)Mesh Size

0.2 m
Mesh Size

0.4 m
Mesh Size

0.6 m
Mesh Size

0.8 m

Maximum 3.25 3.28 3.47 3.37 3.49
Mean 1.63 1.13 0.94 0.57 1.15
Std. 0.66 0.72 0.75 0.73 0.60

4.3. Comparison of the Tests #404 and 406

To investigate the effects of the dimension of the wind turbine tower on the comparison between
the simulated and measured results, test #404 and test #406 are also simulated, in which a 4 MW wind
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turbine tower is used. The drift speeds in test #404 and test #406 are 0.6 m/s and 1.2 m/s, respectively.
The other parameters and mesh size are the same as they are in Section 4.1.

The maximum, mean, and standard deviation values obtained from both the simulated and
measured ice forces for test #404 are presented in Table 7. It is observed that the maximum ice force
calculated from the simulation with mesh size of 0.6 m fits well with the measured result in which
the discrepancy is 2.1%. The discrepancy between the other simulations and the measured results
ranges from 10.8% to 21.2%. For the mean force, the simulation with mesh size of 0.2 m is closest to
the measured results. In addition, the standard deviation is higher than the model test data when the
mesh size is larger than 0.2 m.

The comparisons for test #406 are shown in Table 8. Similar results with test #404 are found.
The maximum ice force obtained from the simulation with mesh size of 0.6 m and the mean force
obtained from the simulation with mesh size of 0.2 m are closest to the measured results, in which the
discrepancies are 9.3% and 1.8%, respectively. The discrepancy of maximum force between the other
simulations and the measured results ranges from 13.3% to 23.7%.

Table 7. Comparison between the simulated and measured results for test #404.

Items
Numerical Simulations (MN)

Model Test
(MN)Mesh Size

0.2 m
Mesh Size

0.4 m
Mesh Size

0.6 m
Mesh Size

0.8 m

Maximum 3.35 4.71 4.16 4.85 4.25
Mean 1.73 1.35 0.85 0.75 1.58
Std. 0.49 1.01 1.02 1.00 0.85

Table 8. Comparison between the simulated and measured results for test #406.

Items
Numerical Simulations (MN)

Model Test
(MN)Mesh Size

0.2 m
Mesh Size

0.4 m
Mesh Size

0.6 m
Mesh Size

0.8 m

Maximum 3.26 4.61 4.11 4.65 3.76
Mean 1.74 1.37 0.84 0.76 1.71
Std. 0.45 0.97 0.96 0.93 0.72

5. Discussion and Conclusions

In this paper, numerical simulations of the interaction between level ice and wind turbine tower
have been performed using software LS-DYNA. The study confirms that both the mesh size and the
failure strain of the ice model play a significant role in the simulated ice forces. With the refinement
of mesh size, the simulated maximum ice force decreases, while the fluctuated frequency of ice force
increases. The mesh size influences both the maximum load and the load frequency greatly. This finding
is similar to those in Wang et al. and Lu et al. for simulating ice-sloping structure interactions [17,18].
It is also found that the mean, standard deviation, and maximum values derived from the simulated ice
forces increase with increasing failure strain. The failure strain of the ice model is not a strictly material
property but rather a numerical remedy to excessive mesh distortions. Therefore, its application to the
simulation of a physical phenomenon requires the calibration with experimental results.

In our study, the measured maximum ice force derived from test #306 is used to calibrate the
failure strain of the ice model with different mesh sizes. The relationship between failure strain and
size ratio is obtained, i.e., y = 0.67e−0.84x. It is found that a larger failure strain should be applied
for the simulations with smaller mesh size to achieve an accurate prediction of maximum ice force.
This is due to the combined effect of mesh size and failure strain on the simulated ice force. In order to
investigate the effect of the impact speed and the wind turbine tower diameter, the same numerical
models are applied to simulate the interaction for tests #304, #404, and #406.

It is found that a mesh size (0.6 m) that is 1.5 times the ice thickness (0.4 m) predicts maximum
ice force with reasonable accuracy for all tests (see Figure A5), in which the discrepancy between the
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simulations and the model tests ranges from 0.3% to 9.3%. The size ratio (mesh size/ice thickness) is
similar to that in Wang et al. for simulating the interaction between sloping marine structure and the
level ice [18].

The other simulations can provide accurate predictions of maximum force for test #304 and #306
(see Figure A5). It indicates that the impact speed has little effect on the comparison between the
numerical simulations with different mesh sizes and the model tests. These numerical models can be
used to study the effect of speed for the same impact objects with regard to maximum force.

The discrepancy of maximum ice force between the simulated and measured results for test #404
and #406 ranges from 2.1% to 23.7%, which is larger than that for test #304 and #306 (i.e., 0.3% to 6.9%).
It indicates that the predictive accuracy may decrease when the impacted structure is changed.

It is also found that the simulated maximum forces for tests #404 and 406 are higher than those
for tests #304 and #306 (see Figure A5). This is because the diameter of the wind turbine tower at the
mean waterline in tests #404 and #406 are relatively larger. Besides, when comparing the simulated
maximum ice forces for tests #304 and #306, or tests #404 and #406, it is seen that slower impact speed
results in a larger maximum force. These are confirmed by the model test results.

There exists significantly discrepancy of mean load and standard deviation between the simulated
and measured results (see Figures A6 and A7). This is mainly caused by the limitations of the ice
model. As an element deletion technique is used to remove failed ice elements from the calculation,
numerical simulation of ice crushing generates zero contact that is created upon the deletion of elements.
In addition, the rotation, accumulation and sliding forces that are contributed by the crushed ice could
not be considered using this ice model. These limitations of the ice model will be addressed in the
future work.

It should be noted that the model tests with the experimental scale of 1:20 were used for the
comparison with the numerical simulations. The effect of the experimental scale on the comparison
will be investigated by using more physical tests including model and full scale tests in the future work.
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Nomenclature

OWT Offshore Wind Turbine
HAWC2 Horizontal Axis Wind turbine simulation Code 2nd generation
FAST Fatigue Aerodynamics Structures and Turbulence
Std. Standard Deviation
εp Effective plastic strain
t Time
Dp

ij Plastic component of the rate of deformation tensor

Ff Ice force in full scale
Fm Ice force in model scale
λ Experimental scale
Fmean Mean force
Fi Ice force at each time
N Total number of output force
σ Standard deviation of force
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Appendix A. The Time Series of the Horizontal Ice Forces from Both the Simulations and
Measurement for Test #304
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Figure A2. Ice force histories from the simulation with mesh size of 0.4 m and measurement for
test #304.
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Figure A4. Ice force histories from the simulation with mesh size of 0.8 m and measurement for
test #304.
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Appendix B. The Comparison of the Maximum Force, Mean Force, and Standard Deviation
between the Simulated and Measured Results for All Tests
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Figure A5. Comparison of the maximum ice force between the simulated and measured results for
all tests.
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Figure A6. Comparison of the mean ice force between the simulated and measured results for all tests.
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